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ABSTRACT

Motivation: Biological pathways provide significant insights on the

interaction mechanisms of molecules. Presently, many essential

pathways still remain unknown or incomplete for newly sequenced

organisms. Moreover, experimental validation of enormous numbers

of possible pathway candidates in a wet-lab environment is time-

and effort-extensive. Thus, there is a need for comparative genomics

tools that help scientists predict pathways in an organism’s

biological network.

Results: In this article, we propose a technique to discover unknown

pathways in organisms. Our approach makes in-depth use of Gene

Ontology (GO)-based functionalities of enzymes involved in meta-

bolic pathways as follows:

(i) Model each pathway as a biological functionality graph of enzyme

GO functions, which we call pathway functionality template.

(ii) Locate frequent pathway functionality patterns so as to infer

previously unknown pathways through pattern matching in meta-

bolic networks of organisms.

We have experimentally evaluated the accuracy of the presented

technique for 30 bacterial organisms to predict around 1500

organism-specific versions of 50 reference pathways. Using cross-

validation strategy on known pathways, we have been able to

infer pathways with 86% precision and 72% recall for enzymes

(i.e. nodes). The accuracy of the predicted enzyme relationships

has been measured at 85% precision with 64% recall.

Availability: Code upon request.

Contact: ali.cakmak@case.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the course of studying organisms at a coarser, systems level,

life scientists recently listed (Kelley et al., 2003) the follow-

ing questions: (i) to what extent are the genomic pathways

conserved among different species? (ii) Is there a minimal set

of pathways that are required by all organisms? (iii) How are

organisms related in terms of the distance between pathways

rather than at the level of DNA sequence similarity? At the core

of such questions lies the identification of pathways in different

organisms. However, experimental validation of an enormous

number of possible candidates in a wet-lab environment

requires monumental amounts of time and effort. Thus, there

is a need for comparative genomics tools that help scientists

predict pathways in an organism’s biological network.
Due to the complex and incomplete nature of biological data,

at the present time, fully automated computational pathway
prediction is excessively ambitious. Hence, in this article, we

propose a new technique to automatically discover fragments of

pathways in biological networks so that biologists can proceed

to extend discovered fragments into a full pathway with less
effort. We consider only metabolic pathways. However, the

techniques described here can be applied to other biological

networks (e.g. signaling pathways) with minimal modifications.

A metabolic pathway is a set of biological reactions where each

reaction consumes a set of metabolites, called substrates, and
produces another set of metabolites, called products. A reaction

is catalyzed by an enzyme (i.e. a gene product) or a set of

enzymes.

1.1 Related work

There are many web resources that provide access to curated

as well as predicted collections of pathways, e.g. KEGG

(Kanehisa et al., 2004), EcoCyc (Keseler et al., 2005), Reactome
(Joshi-Tope et al., 2005) and PathCase (Ozsoyoglu et al., 2006).

Work to date on discovering biological (sub)networks can

be organized under two main titles: (i) Pathway Inference

(Osterman and Overbeek, 2003; Pireddu et al., 2005; Shlomi
et al., 2006, Yamanishi et al., 2007), and (ii) Whole-Network

Detection (Jansen et al., 2003; Tu et al., 2006; Yamanishi et al.,

2005). Pathway inference is to discover unknown pathways for a

given specific organism. An important step of pathway inference

is to mine for graph patterns that are common among existing
known pathways/networks (Sharan et al., 2005). Koyuturk et al.

(2006) casts the problemof finding conserved pathway fragments

among species as a frequent itemset mining problem. Tohsato

et al. (2000) extends themultiple sequence alignment algorithm to
the pathway alignment problem, and utilizes the EC (Enzyme

Commission) hierarchy to relax the matching of enzymes. Hu

et al. (2005) discovers coherent dense subgraphs in a network of

genes that are constructed based onmicroarray data. Pinter et al.

(2005) describes MetaPathwayHunter, a tool that allows for
approximate pathway matching and alignment via the use of

subtree homeomorphism. To the best of our knowledge, in these

studies, the problem is not formulated as a pathway prediction*To whom correspondence should be addressed.
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problem where the hierarchical structure of functional annota-
tions is extensively utilized.
Variations of sequence-based techniques have been the

mostwidely employed pathway inference methods. Reactome
computationally predicts metabolic pathways using ortholog
tables in OrthoMCL database (Joshi-Tope et al., 2005).

Kharchenko et al. (2004) infers missing genes in pathways
based on expression data. Pathway Analyst (Pireddu et al.,
2005) attempts to find catalyzing proteins for each reaction in

the target organism via using BLAST sequence similarity,
hidden markov models and support vector machines. Similarly,
several other works (e.g. Bono et al., 1998; Dandekar and

Sauerborn, 2002; Kelley et al., 2004; Paley and Karp, 2002;
Romero et al., 2005; Shlomi et al., 2006; ) heavily rely on
sequence homology. Osterman and Overbeek (2003) illustrate

the weaknesses of homology-based approaches for finding
missing genes, and they suggest additional comparative
genomic measures for the final decision on missing enzymes.

Green and Karp (2004) integrate a Bayesian network approach
into Pathologic (Paley and Karp, 2002) based on the measures
discussed by Osterman and Overbeek (2002). Nevertheless, the

first set of candidate genes that are further filtered through a
Bayesian network are located through sequence-based homol-
ogy, which does not consistently correspond to functional

similarity. Hence, if a candidate gene is not homologous to
already known genes in a pathway, sequence-based methodol-
ogies tend to ignore such candidates. In addition, such works

assume a fixed reference pathway template, and attempt to
find individual enzymes corresponding to the reactions in the
template. However, pathways may have variations in terms of

sequences of reactions (Ye et al., 2005). Thus, assuming a pre-
specified structure for an unknown pathway is another limiting
aspect of these previous studies.

Yamanishi et al. (2007) combines gene position and phylo-
genetic profile information to discover missing enzymes of
pathways. However, their main assumption is that functionally

related genes tend to occur closely in a genome only applies to
bacterial genomes, and does not commonly generalize to other
organisms.

In addition to individual pathway prediction, the reconstruc-
tion of whole biological networks is also a popular research
area. Yamanishi et al. (2005) builds kernels based on multiple

kinds of genomic information such as gene expression data,
co-localization data and phylogenetic profile to build kernel-
based classifiers that are combined to determine if there is

a metabolic interaction between two given enzyme genes. Given
a set of user-provided proteins, Bio- PIXIE (Myers et al., 2005)
predicts a localized network around input proteins using

a probabilistic framework. Jansen et al. (2003) combines
expression and co-localization data into a Bayesian network
framework to reconstruct protein interaction network of yeast.

Bang et al. (2003) adopts a similar strategy to infer the whole
metabolic network of an organism. One major drawback of
whole-network prediction studies is that predicted interactions

cannot be associated with a particular pathway. Hence, outputs
of such approaches require further processing to organize
inferred interactions into pathways.

In recent years, many general graph mining and indexing
methods have been proposed (Huan et al., 2003, Huan et al.,

2004, Kuramochi and Karypis 2001). Most work in graph

mining (Yan and Han 2002, Yan et al., 2005, Zaki 2005)

focuses on extracting exact frequent patterns. Canonical forms

are utilized (Kuramochi and Karypis 2001) to test whether two

graphs are isomorphic. However, none of the existing frequent

subgraph mining methods consider graph structures where

nodes are part of a well-defined hierarchy. Please see Section 1

in the Supplementary Material for a more detailed discussion

on related work.

1.2 Approach

Here, we propose an alternative focus change from enzymes

and metabolites of pathways to ‘enzyme GO (Gene Ontology)

functionalities’ of pathways. Gene Ontology (GO Consortium,

2004) is a controlled term vocabulary containing about 20 000

hierarchically organized concepts, and attaches a new attribute

for two genomic entity types, namely, genes and gene products.

The true-path rule (GO Consortium, 2004) applies to GO,

which states that a gene/protein annotated with a GO concept

G is also annotated with all the ancestors of G. In particular,

the explicit annotation of a gene/protein p with the GO concept

G is done at the most specific level known in that none of the

descendants of G annotate p. In this article, we use concepts

from the GO molecular function subontology as the units of our

functionality representation.

We thus model each metabolic pathway as a functional

pathway graph of enzyme GO functions, which we call pathway

functionality template (PFT), and focus on enzyme GO

functions [i.e. the pathway GO functionality (PF) domain].

Figure 1 shows a sample pathway where rectangles represent

reactions (labeled with names of genes encoding for their

catalyzing enzymes), and circles labeled with letter ‘m’ represent

metabolites (which are not explicitly named here for simplicity)

being consumed and/or produced. Figure 2 depicts the PFT

of the same pathway where enzymes are replaced with their

most-specific functional annotations, and, for simplicity in

presentation, metabolites are omitted.
Note that due to (a) multiple GO annotations of enzymes,

(b) size (20 000 concepts) and type (not a tree, but a directed

acyclic graph) of the GO hierarchy and (c) the true-path rule,

large numbers of PFTs are likely to exist for a given pathway.

Thus, building efficient pathway prediction/functionality

conservation algorithms is a challenging task.
Our motivation behind the use of pathway functionality

templates is that essential cellular actions are common to

a large set of organisms regardless of their complexity

FMN
Binding

Guanyl
Binding

Adenyl
Binding

Protein Carrier
activity

Cation Trans.
Activity

Fig. 2. The functionality template of the pathway in Figure 1.
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Fig. 1. A sample pathway.
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(Kelley et al., 2003). However, the same function in different
organisms can be carried out by different genomic agents with
similar functional annotations. Hence, to compensate for the
variances in genomes of different organisms, and yet to

accommodate the commonness in the blueprints of biological
processes, we argue that the unit of focus may be shifted to the
function carried out in each individual step of a pathway, rather

than the performer of the step, i.e. the enzymes.

1.3 Contributions

Contributions of this article are as follows:

� A new GO-based gene-function-centric pathways paradigm
which can accommodate genetic variations among organ-
isms at the functionality level.

� A metabolic pathway inference framework tool that

efficiently and effectively predicts unknown pathways of
organisms.

� An effective algorithm for mining frequent PF patterns
that are common in most organisms.

� Extension of generalized suffix trees (Gusfield, 1997) to

index multiple PFTs.

� Evaluation of proposed model’s accuracy through
precision-recall analysis.

The research presented in this article is performed as part of

PathCase Pathways Database System (Ozsoyoglu et al., 2006),
which is a web-based bioinformatics tool that allows for
storing, visualizing and querying of pathways at different
abstraction levels.

This article is organized as follows. In Section 2, the PF
model is presented with a formal discussion of the pathway
prediction problem. Section 3 elaborates on building an index

structure to efficiently mine frequent PFTs. In Section 4,
we discuss an algorithm for mining frequent PF patterns, which
is followed by a discussion of a pattern matching algorithm

described in Section 5. Section 6 presents our experimental
evaluation framework and the experimental results. In
Section 7, we conclude and discuss future work.

2 SYSTEM AND METHODS

2.1 Functional model of pathways

We first translate a pathway into a graph of enzymes as nodes, where

the enzymes of consecutive reactions interact indirectly through shared

products and substrates. Figure 3 depicts the enzyme graph for the

pathway of Figure 1 with GO annotations of the enzymes. Next,

we replace each enzyme with its ‘most specific’ annotations from GO to

obtain a PFT for the pathway (Fig. 2). Note that, due to the true-path

rule on the hierarchical organization of GO concepts (e.g. Fig. 7),

a given PFT can be turned into a ‘more general’ PFT by replacing any

annotation with any of its ancestors. Therefore, a pathway can have

multiple functionality templates depending on the levels in GO

hierarchy from which the annotations are selected. As an example,

in the original PFT of Figure 2, the branching nodes that follow the first

step, FMN Binding, can be replaced with their immediate parents.

Similarly, the first and the last steps can be replaced with their ancestors

to get the PFT in Figure 4.

2.2 Problem definition

Given a set of organism-specific versions of a pathway, we would like

to computationally infer pathway fragments in another organism’s

metabolic network for which the given pathway has not yet been

characterized. We give an example.

Example 1. Consider the enzyme graphs of sample pathways P1

through P4 in Figure 5 that are different versions of a given pathway P

in four different organisms. Note that all the enzymes are different,

and the four enzyme-only pathways graphs show no similarity to each

other. Suppose (i) we have a simple ontology of functionality concepts

provided in Figure 7, (ii) the true-path rule of GO holds in our sample

annotation ontology and (iii) the graphs in Figure 6 constitute the

functionality domain representations of P per organism. Then, one can

locate instances of the PF pattern Pf depicted in Figure 8a in the

functional views of pathways P1, P3, P4. That is, Pf appears in P1

(by replacing o with g), P3 (by replacing k with d, and l with h, and i

with g) and P4 (by replacing m with h, and j with g, and h with d) where
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Fig. 3. Enzyme graph with GO functionality annotations.

Nucleotide
Binding

Purine Nucleotide
Binding

Purine Nucleotide
Binding

Transporter
Activity

Cation Trans.
Activity

Fig. 4. Alternative functionality template
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Fig. 6. PFT representations of pathways in Figure 5.
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all node replacements are done using the true-path rule. Note that

a typical graph mining process on the actual four sample pathways

of Figure 5 will not locate any pattern as none of the graphs explicitly

contain the nodes of the pattern. Only by (a) moving from the tradi-

tional domain of processes-metabolites of pathways into the func-

tionality domain, and (b) utilizing the generalization/specification

relationships embedded in a hierarchical organization of the function-

ality concepts (Fig. 7), we are able to locate the pattern Pf in Figure 8a

as well as the others shown in Figure 8b and c.

Given a set of PFTs for organism-specific versions of a pathway PR,

we want to (step 1) find PF patterns (which are subgraphs within PFTs)

that are common in most of the organisms, and (step 2) locate the

discovered patterns in a given organism’s functional metabolic network,

for which the given pathway has not yet been characterized, and infer

the pathway Pk of PR for the given organism Ok.

Given a set H of PFTs, a subgraph of a PFT in H is called a PF

pattern if it is contained in sufficiently many number of PFTs in H.

Definition. Support of a pattern F, denoted as support(F),

with respect to a set S of PFTs is the number of PFTs that

contain F in S.

As an example, the support of the pattern in Figure 8a in the four PFTs

in Figure 6 is 3.

Definition. (Closure of a PF Pattern). Given a PF pattern F,

the closure F* of F is the set of all PF patterns that can be obtained

by (i) replacing any node in F with any of its ancestors in GO,

and/or (ii) deleting any node and its incident edges from F.

Example 2. Given the PFT in Figure 8a as a PF pattern F, the PFTs

in Figure 8b and c are both in the closure F* of F. Note that F1¼F2

iff F1*¼F2*.

Also, we require the discovered pattern set to be minimal and complete.

For a set of patterns to be minimal, no pattern in the set should

be included in (i.e. be a subgraph of) another pattern in the set, or be

included in the closure of a pattern in the set. Furthermore,

completeness requires a pattern set to include all possible PF patterns

that satisfy the specified threshold requirements.

Definition. (Minimality of a PF Pattern Set): A set R of PF
patterns is minimal if, for any pair of patterns Fi, Fj in R, {Fk | Fk

2 Fj* and Fi is a subgraph of Fk}¼;.

Example 3. The pattern set that is shown in Figure 8 is not minimal as

the closure of the pattern of Figure 8a includes the pattern of Figure 8c.

Definition. (Completeness of a PF Pattern Set): Let S be a
set of PFTs, and R(") be a set of patterns over the PFTs in S

with support � " where ", 05"� 1, is the support threshold. Then
a set of patterns R0 is complete with respect to S with support
threshold " if R0 contains R(").

Next we specify the two steps of pathway prediction.

Step 1: Finding Frequent PF Patterns in a PFT set. Given (a) a pathway

PR, (b) the set PO¼ {(P1, O1), (P2, O2), . . ., (Pn, On)} of PFT-organism

pairs such that Pi is the most-specific PFT for the organism-specific

version of PR in organism Oi and (c) a threshold ", the frequent PF

pattern mining problem is to find the PF pattern set F(PR, PO, ").

Once the set F(PR, PO, ") of frequent PF patterns is identified, next

we search for the patterns in the functional PF network Mk of the target

organism Ok, where Mk consists of all known reactions in organism Ok.

The subgraphs ofMk matching the patterns of F(PR, PO, ") are mapped

to the actual enzymes, and predicted as fragments of pathway PR in

organism Ok.

Step 2: Predicting Pathways from Matched Frequent Patterns.

Given the functional PF network Mk of an organism Ok, and the set

F(PR, PO, ") of PF patterns extracted (with respect to ") from the

organism-specific versions of a pathway PR, the pathway prediction

problem is to (i) search for matches in Mk to patterns of F(PR, PO, "),

and, out of the matched patterns inMk, (ii) identify a subgraph G ofMk

such that, when mapped back into the traditional pathway domain,

G is the predicted pathway Pk of PR in organism Ok.

3 ALGORITHM

Given a pathway PR and a set PO¼ {(P1, O1), (P2, O2), . . .,

(Pn, On)} of PFT-organism pairs such that Pi is the PFT for the
organism-specific version of pathway PR in organism Oi, we
first construct canonical string representations for each Pi in

PO. Next, each constructed string is inserted into Generalized
Suffix Graph (GSG). Then, we mine for frequent PF patterns
on the GSG. Finally, we search for occurrences of the

discovered PF patterns in the metabolic network of the given
organism for which the organism-specific-version of PR is

not known.

(i) Restructuring the GO and pathways: in order to simplify
the presentation, and decrease the level of the problem

complexity, we transform all pathways and the GO into
trees by node and edge replications. (see Section 2 in
Supplementary Material.)

(ii) Canonical string representation: in order to facilitate
the representation of all possible PFTs in a compact
manner, we introduce string-based canonical representa-

tion schemes for both individual enzymes and PFTs.
(see Section 3 in Supplementary Material.)

(iii) Generalized suffix graph: we extend the generalized suffix

tree (GST) data structure (Gusfield, 1997) to represent
multiple PFTs in a single structure, and to efficiently
locate frequent PFT patterns. Due to use of non-tree

auxiliary edges, we refer to the extended GST as
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Fig. 7. A sample ontology.
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generalized suffix graph (GSG). (see Section 4 in
Supplementary Material.)

3.1 Mining frequent PF patterns on a GSG

The frequent PF pattern mining task has two steps. Step 1

‘grows’ multiple subgraphs R of the GSG G, each via a set C of

‘candidate edges’. Step 2 converts each R into a frequent PF
pattern. Step 1 consists of two iterative subtasks: (a) identify

a candidate (expansion) edge set C from the GSG G, and
(b) using C, expand or initiate the subgraph R, for eventual

frequent pattern identification. More specifically, given
(i) a GSG G(r, V, E) with root r, node set V and edge set E,

(ii) a subgraph R of G (originally contains only root r),
(iii) a candidate (expansion) edge set C, C � E, to visit, (iv) a set

of V of already visited edges, V � E, V \ C¼; and
(v) a support threshold ", the frequent pattern mining

algorithm returns (step 1) a set of subgraphs R of G, which
are then converted back (step 2) to tree-structured patterns.

(see Section 5 in Supplementary Material for more details.)

Definition. (Subgraph of a GSG). Consider a GSG

G(r, V, E), and a connected graph R(r0, V0, E 0), where V,
and V0 are the node sets, E, and E0 are the edge sets, r, and r0 are

the root nodes of G and R, respectively. Then, R is a subgraph of

G if (a) r¼ r0, (b) V0� V and (c) E0� E.

(i) Enumerating candidates: given an edge E in a GSG G, the
set of candidate edges that can be used to expand R

through E contains those edges which follow E in G.
In order not to consider the same edge as a candidate

more than once, a set of previously visited candidates,
V, is also kept track of.

(ii) Expanding subgraphs: given a candidate edge set C and a
subgraph R to be expanded, an edge E is chosen from C,

and R is expanded with E to construct a larger subgraph
R0. Then, the support of R’ is computed directly from the

suffix sets of the edges in R. Similar to the backtracking
mechanism (Zaki, 2005) during the expansion of sub-

graph R, whenever an edge E is chosen from the candi-
date edge set C, E is removed from C, and inserted into

the visited edge set V. This step is taken in order to prune
the duplicate subgraphs that can result from the

consideration of candidate edges in different orders.

Example 4. Consider the GSG in Figure 9 that contains
PFT string suffixes S1¼ be $ c $ r, S2¼ be $ {cg $ r}{rt},

S3¼ b $ {c}{rt}. PFT graph representations P1, P2 and P3

of PFT string suffixes S1, S2 and S3 are given in Figure 10.

With support threshold as 2, the algorithm produces two
subGSGs (Fig. 11) that, after conversion, represent two distinct

PF patterns.

Given a setP ofGSG subgraphR0s computed by step 1, in step 2,

each subgraph G is converted to a frequent PF pattern string
by traversing their edges recursively in depth-first order, and

appending the edge labels to the constructed pattern string.

3.2 Pathway fragment prediction

Once the frequent PF pattern set F(PR) for pathway PR is

computed, the metabolic PF network M of a target organism O

is searched for occurrences of PF patterns in F(PR). As part

of preprocessing, on each metabolic network, enzyme nodes

with multiple GO concept annotations are replicated.
When a metabolic network fragment is more specific than

a PF pattern, by, applying the true-path rule, a match occurs.

As an example, PF pattern P¼ ‘ab $ de’ matches to the more-

specific metabolic network fragment ‘abc $ def’. However, if a

pattern is more specific than the corresponding metabolic

pathway fragment, there is no match. We choose not to allow

matches to fragments that are more general than the pattern

because, given a pattern, the number of matching candidate

pathway fragments can easily explode, which leads to more

false positives than true positives. In Section 6.4, for inferring

an unknown pathway, we also perform a more relaxed

matching, and discuss possible uses of external genomic infor-

mation to eliminate or strengthen some of the alternatives

in the result set. Finally, in the future work section, we discuss

possible integration of taxonomy-based semantic similarity

measures to allow ‘approximate’ pattern matches.
After each PF pattern in F(PR) is searched in the target

network, the matched nodes and edges are added as the sum

of the matching scores of all patterns which match to that edge

or node. The matching score of a pattern is an aggregate of

two measures:

(i) Selectivity (Sel): given a pattern P, the metabolic

network of each organism (excluding the target organ-

ism) is searched for P. Then, in the metabolic networkM,

the total number of nodes and edges that are included in

at least one match to P in M is recorded. Next, the

fraction F of matched nodes to the size (number of nodes)

of the network is computed. Finally, F is normalized by

the total number of nodes in P, and recorded as the

e (S1 ,S2)b (S1, S2, S3)
c (S1 ,S2, S3)

r (S2, S3)

 $ (S1, S2) r (S1, S2)g (S2)
 $ (S1, S2, S3)

t (S2, S3)root node  α (S1, S2, S3)

E1 E2 E3
E4 E5 E6 E7

E8
E9E10

Fig. 9. Computing frequent patterns on a GSG.
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Fig. 10. PFT graph representations of the input PFT strings.
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Fig. 11. GSG subgraphs representing PF patterns.
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selectivity of the pattern P in M. This process is repeated
for each metabolic network, and the final selectivity of
the pattern is computed as the average of its selectivity

values over all metabolic networks.
(ii) Support of a PF Pattern (Sup): PF patterns which have

higher support among the organisms for which an

instance of PR is known are indicative of the existence
of an instance of PR in the searched organism.

Final confidence of a candidate edge/node is computed by
the aggregation of the selectivity and the support measures.
That is, the confidence of a node or edge x in M to match to a

node/edge in a pattern P with selectivity Sel and support Sup is:

Conf x,M,Pð Þ ¼ wsel*Selþ wsup*Sup

where wsel, and wsup are weights that are experimentally deter-
mined according to the accuracy that the measure provides when
applied alone (i.e. independent of the other measures). (see

Sections 6 and 7.1 in Supplementary Material for more details).

4 EXPERIMENTS

4.1 Data set

The experiments were performed on a set of pathways that were

downloaded from KEGG (Kanehisa et al., 2004) pathways
database (as of June 2006). We randomly picked 50 pathways
of 30 bacterial organisms, which provided us with 1500

organism-specific pathways as the core data set. Common
molecules (e.g. H2O) that appear in at least half of the pathways

were eliminated from the data set. Biological processes were
assumed to always proceed from substrates to products,
and reversible processes are ignored. Metabolic networks

of our chosen organisms were constructed from all known
enzymatic reactions (processes) in these organisms. As a result,

each metabolic network consisted of, on the average, 402
enzymes and 9695 enzyme relationships. In the PF domain, the
average number of nodes was 1037, and the average number

of edges per metabolic network was 51 713.
The original GO molecular function hierarchy (downloaded

in September 2006) included 7459 GO concepts organized

in a hierarchy of 15 levels with 8707 hierarchical relationships
among the concepts. After applying the transformation

described in Section 2.3, the transformed version of GO
included 11 675 terms.

4.2 Metrics

In order to evaluate the accuracy of our pathway predictions,

precision/recall measurements were employed. The prediction
accuracies of enzymes and enzyme relationships were assessed
separately through the following measures.

� Enzyme Precision is the fraction of correctly predicted
enzymes in the inferred pathway.

� Enzyme Recall is the ratio of correctly predicted enzymes in

the inferred pathway to the total number of enzymes in the
actual pathway for a given organism.

� Enzyme Relationship Precision is the fraction of correctly
predicted edges among the enzyme nodes in an inferred

pathway instance for a given organism.

� Enzyme Relationship Recall is the ratio of correctly pre-

dicted relationships between enzymes to all known enzyme

relationships in the actual pathway for a given organism.

4.3 Results

The main goal of this study is to accurately predict the

organism-specific version of a pathway P for a given organism

for which P is not known yet. Hence, in the first experiment, we

evaluated the accuracy of the overall system on the known data

using the leave-one-out strategy as follows: for each reference

pathway P, we pick a target organism O for which P is to be

predicted. PF patterns are mined from the known instances of

P in organisms other than O from our chosen set of organisms.

Then, the generated patterns are searched in the metabolic

network of O to predict a partial instance of P in O. This

procedure is repeated 30 times for each pathway, where, at each

iteration, a distinct organism is selected as the target organism.

Overall, 1500 distinct pathway inference tasks were run. The

overall accuracy was computed as the average of all runs.

Figure 12 plots the overall precision/recall values at different

GO specificity levels.

Observation 1: by switching to the GO functionality domain,

and using PF patterns, test pathways are successfully predicted

with the maximum precision of 88% for enzymes, and 87% for

enzyme relationships at specificity levels of 8 and above. The

maximum prediction recall is 74% for enzymes, and 65% for

enzyme relationships, both at specificity level 3. High accuracy

shows that functionalities of genomic agents that are involved in

different organism-specific versions of a pathway are conserved

substantially among organisms.

Since the deepest level that contains a GO term annotating

an enzyme in our data set is 14, the specificity level of 14 in

Figure 12 corresponds to the case where the true-path rule of

GO is ignored. Hence, the accuracy at specificity level 14 is

utilized for comparison purposes against those cases where the

true-path rule is employed during pattern discovery.

Observation 2: taking the hierarchical organization of

functionality terms into account increases the recall values of

both enzyme and enzyme relationships by 5% while at lower

specificity levels the precision decreases sharply. If high recall is

the primary goal, specificity level should be set to lower levels to

take advantage of GO hierarchy at maximum. Otherwise, for

Fig. 12. Overall precision/recall at different specificity levels.
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high precision, 5 is the lowest specificity level that provides a

balanced rate of precision and recall.

Increase in the recall value as the specificity level decreases

is expected since, as illustrated in the running example of

Section 2, using more general functionality terms leads to

patterns that match to larger set of enzymes with different, but

closely related, functionalities. As for precision, in the best case,

the precision can be the same as the case where the GO

hierarchy information is not considered during frequent pattern

discovery.
Figure 12 shows that considering the GO hierarchy has the

most significant impact on GO concepts at levels 6 and above

in the GO tree. This result correlates well with the database

statistics that the average level of GO concepts that annotate

at least one enzyme of a pathway is 6.72.

Observation 3: precision and recall values remain almost the

same until specificity level 7, where an increase in recall starts,

and becomes flat at specificity level 3.

Another experiment was conducted to study the contribution

of using the GO hierarchy for enriching the set of PF patterns

common to majority of organisms. For first run, we ignored the

true-path rule of GO, and counted the number of created

patterns. We then repeated this process 10 times, and at each

run i, we replaced the nodes in the most specific PFTs with their

ancestors that are i-level above those in the first run in the

GO hierarchy. We refer the value i as the relaxation level (RL).

At each relaxation level, we computed the average pattern

support. Figure 13 shows the average pattern support values

at each relaxation level where the relaxation level 0 represents

the most specific PFT of a pathway. The experiment was

performed with min threshold of 10.

Observation 4: For pattern creation, going up in the hierarchy

increases the average pattern support until relaxation level 5,

after which, a gradual decrease occurs at levels 6 and 8.

We explain the average pattern support decrease after

relaxation levels 4 and 6 based on the distributions of patterns

at different sizes where size is expressed in terms of the number

of nodes in the pattern. Figure 14 shows distributions for

patterns of different sizes, where size-10þ refers to the class

of patterns with size 10 or more. Larger patterns tend to have

smaller support. Therefore, whenever the percentage of smaller

size patterns increases within an RL, the average pattern

support usually increases as the majority of patterns in that set

have large support values due to their small sizes. For instance,

in Figure 13, there is a steep increase in average pattern support

from RL 3 to RL 4. This is mainly because RL 4 has a fewer

number of size-2 patterns, and, instead, has more size-3 and

size-4 patterns in comparison to RL 3 (Fig. 14). RL 3 has more

size-10þ patterns, but since the number of such patterns is very

small in the overall set of RL 3’s patterns, its effect is minimal.

As for the decrease in average pattern support from RL 4 to

RL 5, the percentages of size-3, -4 and -10þ patterns are higher

in RL 5 compared to RL 4, which leads to a gradual decrease

in average pattern support.
In an additional experiment, we further studied how the

predicted precision and recall change at different pattern

thresholds. We also counted the numbers and the average

sizes of patterns produced at each threshold setting. Figure 15
plots the precision/recall against the support threshold at

specificity level 3.

Observation 5: The recall increases as the minimum support

threshold gets smaller. And, the precision peaks at support
threshold 19, and starts to decrease gradually at support

threshold 18 and 11.

When the support threshold is high, the number of patterns is

usually low (on the average, around two patterns per pathway).
Hence, most of the enzymes and enzyme relationships are

missed. On the other hand, at low thresholds, the number of
patterns increases (around nine per pathway on the average),

and, thus, the ratios of discovered enzymes and enzyme
relations also increase. Nevertheless, the precision decreases
due to the relatively low quality of patterns as the threshold

decreases. For high threshold values, the precision is expected
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to be higher. However, during the experiments, for high thres-
hold values, no patterns could be generated, which leaves
precision/recall as 0. Since we also include cases with no results

in precision computation, the overall precision is low for
experiments with high support thresholds. (see Section 7.2 in
Supplementary Material for results where such cases are

excluded).

4.4 Candidate novel pathways

The main goal of this study is to infer novel pathways.
To this end, we setup a prototype prediction framework for
Saccharomyces cerevisiae as follows. We constructed a meta-

bolic network out of all known enzyme genes (i.e. genes with an
EC number) where nodes are genes, and an edge is created

between any pair of genes based on the substrate-product
relationship defined by their EC numbers. In total, there are
1196 genes with at least one EC number.

Here, we present candidate novel pathway fragments for
two pathways that are not yet known for S.cerevisiae. Figure 16
shows the predicted pathway fragment for Biosynthesis of

siderophore group nonribosomal peptides where round rectangles
represent genes possibly catalyzing a process, and directed solid
lines represent substrate/product-based biochemical relation-

ships between gene pairs. Undirected dashed lines are not part
of the pathway, and are shown just to facilitate referring to gene

pairs on the pathway graph. Since the predicted pathway of
Figure 16 is not known yet, in order to independently assess the
correctness of the prediction, we looked up gene expression

experiments available in the literature. Mizuguchi et al. (2004)
showed that Pearson correlation values for the expression
values of gene pairs represented by edges #1, #3 and #5 are very

high (i.e. greater than 0.8, which is a commonly accepted
threshold). In addition, Van Attikum et al. (2004) and Cullen

et al. (2004) reported that expression values for gene pairs #2,
#4, #5 and #6 are highly correlated (Pearson Value40.8). This
constitutes an independent verification of our predicted path-

way fragments in Figure 16.
As a second experiment, we attempted to predict another

unknown pathway, 2,4-dichlorobenzoate degradation for

S.cerevisiae. First, we performed pattern matching as described
in Section 5, but our prototype did not return any results.
Then, we relaxed pattern matching by replacing each node in

the pattern with its ancestor. However, the relaxed pattern
matching led to multiple candidate matches with the same

confidence score. In Figure 17, all linear paths of three genes
from TES1 or ACH1 to BNA1 or BNA2 represent alternative
predictions. In order to eliminate some of the alternatives,

we first searched for transcription factors that are known to
be common regulators of mRNA expressions for each pair of
genes. The names in dotted rectangles attached to edges are

shared transcription factors for the associated gene pairs
(Teixeira et al., 2006). Due to the lack of common transcription
factors that support the prediction, alternative paths that start

from TES1 are removed. The remaining five genes (with bold
border lines) and the numbered relationships are left, and may

take part in 2,4-dichlorobenzoate degradation pathway of
S.cerevisiae. On this remaining set, we further searched for
gene expression values, and found that the gene pairs connected

by edges #1, #2, #4, #6 (Cullen et al., 2004), #3, #5

(Derisi et al., 1997), #7 and #8 (Wyrick et al., 1999) all have
well-correlated expression patterns. Therefore, this constitutes
an independent verification that these five genes and the

dark-colored solid edges may have a role in this pathway.

5 DISCUSSION

We have presented a pathway inference framework based
on the functional annotations of enzymes participating in

a pathway. Given a pathway P, we first create a pathway
functionality template for each known organism-specific
version of the pathway. Next, using a generalized suffix

graph, frequent pathway functionality template patterns are
discovered. Finally, discovered patterns are searched in

the metabolic network of the organism for which P will
be predicted. Matching fragments are evaluated based on the
selectivity and the support of the patterns.

As part of future work, we are planning to study two distinct
directions for approximate pattern matching. First, we would
like to allow matches to patterns where matched fragments

are more general than patterns. Taxonomy-based semantic
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similarity measures (Lin 1998; Lord et al., 2003; Resnik, 1999)
can be employed to judge the similarity between a pattern and
an approximately matching metabolic network fragment.
Second, due to the incomplete nature of biological data, some

metabolic networks may have missing relationships which can
prevent an exact match to a given pattern. One can develop a
pattern matching scheme that can tolerate missing edges to some

extent under certain constraints. In order to avoid/minimize the
introduction of false positives into the predictions, formally
defining and evaluating constraints under which such missing

edges would be tolerated is a promising research direction.
In addition, employing statistical machine-learning techni-

ques such as SVM (Vapnik, 1995) by building kernels based on

external genomic information (e.g. gene expression data and
co-localization) can provide an alternative assessment, and we
can then choose the most promising predictions when there
exist multiple candidates.

Finally, exploring the effect of taxonomic distance between
a predicted organism and those organisms whose pathways
are used for training (creating patterns) on accuracy is an

interesting future direction. (see Section 8 in Supplementary
Material for more discussion.)
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